Existence Results for abstract Impulsive semilinear differential Equations

H. HAMMOUCHE, K. GUERBATI

Laboratoire de Mathématiques et des Sciences appliquées Université de Ghardaia. e-mail: h.hammouche@yahoo.fr, guerbati_k@yahoo.com.

keywords: fixed point, mild solutions, measure of weak noncompactness. **Ams Classification:** 47H09, 47H10,

1. INTRODUCTION

In this paper, we shall be concerned with existence of mild solution solutions defined on a compact real interval for first order impulsive semilinear functional inclusions with state-dependent delay in a separable Banach space of the form:

$$y'(t) - Ay(t) = f(t, y_t), \quad t \in J = [0, b],$$
(1)

$$\Delta y(t_i) \in I_k(y_{t_k}), \quad k = 1, 2, \dots, m,, \qquad (2)$$

$$y(t) = \phi(t), \quad t \in (-r, 0],$$
 (3)

where $f: J \times \mathcal{D} \to E$ is a given function, $\mathcal{D} = \{\psi : [-r, 0] \to E, \psi \text{ is continuous}$ every where except for a finite number of points s at which $\psi(s^-), \psi(s^+)$ exist and $\psi(s^-) = \psi(s)\}, \phi \in D, 0 < r < \infty, 0 = t_0 < t_1 < \ldots < t_m < t_{m+1} = b, I_k \in C(E, E), k = 1, 2, \ldots, m, A : D(A) \subset E \to E$ is the infinitesimal generator of a C_0 -semigroup $T(t), t \ge 0$, and E a real separable Banach space with norm |.|.

We denote by y_t the element of D defined by

$$y_t(\theta) = y(t+\theta), \ \theta \in [-r,0].$$

Here $y_t(\cdot)$ represents the history of the state from t - r, up to the present time t.

2. Preliminaries

In this section, we introduce notations and preliminary facts that are used throughout this paper. C(J, E) is the Banach space of all continuous functions from J into E with the norm

$$||y||_{\infty} = \sup\{|y(t)| : t \in J\},\$$

and $\forall r > 0 \ B_r$ denotes the closed ball in E centered in 0_E , with radius r. Here \rightarrow weak convergence and \rightarrow denotes strong convergence in E, respectively. B(E) denotes the Banach space of bounded linear operators from E into E, with norm

$$||N||_{B(E)} = \sup\{|N(y)| : |y| = 1\}.$$

 $L^1(J, E)$ denotes the Banach space of measurable functions $y : J \longrightarrow E$ which are Bochner integrable normed by

$$\|y\|_{L^1} = \int_0^b |y(t)| dt$$

 $\mathcal{B}(E)$ denotes the collection of all nonempty subsets of E. $\mathcal{W}(E)$ is the subset of $\mathcal{B}(E)$ consisting of weakly compact subsets of E.

Definition 2.1. The measure of weak noncompactness is a map $\omega : \mathcal{B}(E) \longrightarrow [0, +\infty)$ defined by:

$$\omega(M) = \inf \{r > 0, \exists w \in \mathcal{W}(E) with M \subseteq w + B_r\}$$

foe every $M \in \mathcal{B}(E)$

The measure of weak noncompactness was introduced by Blasi^[5]. It has the following properties: see Appell and Pascale [4, 5]

Let M_1, M_2 be two elements of $\mathcal{B}(E)$. the following properties hold:

1. If $M_1 \subseteq M_2$ then $\omega(M_1) \leq \omega(M_2)$

2. $\omega(M_1) = 0$ if and only if $\overline{M_1}^w \in \mathcal{W}(E)$ ($\overline{M_1}^w$ means the weak closure of M_1)

3.
$$\omega(\overline{M_1}^w) = \omega(M_1)$$

- 4. $\omega(M_1 \cup M_2) = \max \{ \omega(M_1), \omega(M_2) \}$
- 5. $\omega(\lambda M_1) = |\lambda| \omega(M_1)$ for all $\lambda \in \mathbb{R}$

6.
$$\omega(co(M_1)) = \omega(M_1)$$

7.
$$\omega(M_1 + M_2) \le \omega(M_1) + \omega(M_2)$$

In L^1 -spaces the map $\omega(.)$ can be expressed as

$$\omega(M) = \limsup_{\epsilon \to 0} \left\{ \sup_{\Psi \in M} \left[\int_D ||\Psi(t)||_X dt; |D| \le \epsilon \right] \right\}$$

for every bounded subset M of $L^1(\Omega; X)$ where X is a finite dimensional Banach space and |D| is the Lebesgue measure of the set D. Now, we introduce the concept of separate contraction mapping which was introduced in [7]

Definition 2.2. Let X be a Banach space and $f: X \longrightarrow X$ is said to be a separate contraction mapping if there exist two functions $\varphi, \psi : \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ satisfying:

- (a) $\psi(0) = 0$, ψ is strictly increasing,
- (b) φ is continuous,
- (c) $||f(x) f(y)|| \le \varphi (||x y||),$ (d) $\psi(r) \le r \varphi(r)$ for r > 0.

We will use the following two conditions:

 (\mathcal{A}_1) : If $(x_n)_{n\in\mathbb{N}}\subseteq D(T)$ is a weakly convergent sequence in X, then $T(x_n)_{n\in\mathbb{N}}$ has a strongly convergent subsequence in X.

 (\mathcal{A}_2) : If $(x_n)_{n\in\mathbb{N}}\subseteq D(T)$ is a weakly convergent sequence in X, then $T(x_n)_{n\in\mathbb{N}}$ has a weakly convergent subsequence in X.

Definition 2.3. The superposition operator generated by a carathéodory function f is the mapping defined by:

$$\begin{array}{rccc} N_f: & L^1(\Omega) & \longrightarrow & L^1(\Omega) \\ & y(t) & \longmapsto & N_f(y(t)) = f(t, y(t)), \end{array}$$

where $L^1(\Omega)$ is the set of all mesurable functions on Ω .

Lemma 2.1. see [6] and the references therein Let $f : \mathbb{R} \times \Omega \longrightarrow \mathbb{R}$ be a carathéodory function. Then the superposition operator N_f maps $L^1(\Omega)$ into itself if and only if there exist a constant $b \ge 0$ and a function $a(\cdot) \in L^1_+(\Omega)$ such that:

$$|f(t,y)| \le a(t) + b|y|$$

where $L^1_+(\Omega)$ denotes the positive cone of the space $L^1(\Omega)$.

Lemma 2.2. Let Ω be a boubded domain in \mathbb{R}^n . If $f : \mathbb{R} \times \Omega \longrightarrow \mathbb{R}$ is a carathéodory function and N_f maps $L^1(\Omega)$ into itself, then N_f satisfies (\mathcal{A}_2)

The following fixed point theorem is crucial for our purposes.

Theorem 2.1. [6] Let X be a banach space and $A, B : X \longrightarrow X$ be two continuous mapping. If A, B satisfy the following conditions,

- (i) A maps bounded sets into relatively weakly compact ones,
- (ii) A satisfies (\mathcal{A}_1) ,
- (iii) B is a separate contraction satisfying condition (\mathcal{A}_2) , Then, either
- (a) the equation x = Ax + Bx has a solution, or
- (b) The set $\mathcal{E} = \left\{ x \in X : x = \lambda B(\frac{x}{\lambda}) + \lambda A(x) \right\}$ is unbounded for $\lambda \in (0, 1)$.

3. EXISTENCE RESULTS

we shall consider the space

$$PC = \left\{ y : [0, b] \to D(A) : y_k \in C(J_k, D(A)), k = 0, \dots, m \text{ such that} \\ y(t_k^-), y(t_k^+) \text{ exist with } y(t_k) = y(t_k^-), k = 1, \dots, m \right\}$$

which is a Banach space with the norm

$$||y||_{PC} = \max\{||y_k||_{\infty}, k = 1, \dots, m\}$$

where y_k is the restriction of y to $J_k = [t_k, t_{k+1}], k = 0, \dots, m$.

Set

$$\Omega = \{ y : [-r, b] \to D(A) : y \in D \cap PC \}.$$

Then Ω is a Banach space with norm

$$||y||_{\Omega} = \max(||y||_D, ||y||_{PC})$$

In this section, we give our main existence result for problem (1)-(3). Before stating and proving this result, we give the definition of its mild solution.

Definition 3.1. A function $y \in PC([-r, b], E)$ is said to be a mild solution of problem (1)–(3) if $y(t) = \phi(t)$, $t \in [-r, 0]$, and y is a solution of impulsive integral equation

$$y(t) = T(t)\phi(0) + \int_0^t T(t-s)f(t,y_s)ds + \sum_{0 < t_k < t} T(t-t_k)I_k(y(t_k^-)), \quad t \in J.$$

Let us introduce the following hypotheses:

- (H1) $A: D(A) \subset E \to E$ is the infinitesimal generator of a semi-group $\{T(t)\}, t \in J$. Let $M = \sup\{||T(t)||_{B(E)}: t \in J\};$
- (H2) There exist constants $d_k > 0$, k = 1, ..., m with $M \sum_{k=1}^{m} d_k < 1$ such that for

each $y, x \in E$

$$\left|I_{k}\left(y\right)-I_{k}\left(x\right)\right| \leq d_{k}\left|y-x\right|$$

(H3) The function $f: J \times D \to E$ is Carathéodory and there exist a constant $\rho > 0$ and a function $p \in L^1(J, \mathbb{R}_+)$ such that: $|f(t, x)| \le p(t) + \rho |x|$

Theorem 3.1. Under assumtions (H1), (H2) and (H3), the pronlem 1-3 has at least one mild solution

Proof. Transform the problem (1)-(3) into a fixed point problem. Consider the two operators:

$$\mathcal{A}, \mathcal{B}: L^1(\Omega) \to L^1(\Omega)$$

defined by

$$\mathcal{A}(y)(t) := \begin{cases} 0, & \text{if } t \in [-r, 0];\\ \sum_{0 < t_k < t} T(t - t_k) I_k(y(t_k^-)), & \text{if } t \in J, \end{cases}$$

and

$$\mathcal{B}(y)(t) := \begin{cases} \phi(t), & \text{if } t \in [-r, 0]; \\ T(t)\phi(0) + \int_0^t T(t-s)f(s, y_s) \, ds, & \text{if } t \in J. \end{cases}$$

Then the problem of finding the solution of problem (1)–(3) is reduced to finding the solution of the operator equation $\mathcal{A}(y)(t) + B(y)(t) = y(t), t \in [-r, b]$. We shall show that the operators \mathcal{A} and \mathcal{B} satisfies all the conditions of Theorem 2.1

4

References

- N. Abada, R. Agarwal, M. Benchohra and H. Hammouche, Existence results for nondensely defined impulsive semilinear functional differential equations with state-dependent delay, Asian-Eur. J. Math. 1 (2008), no. 4, 449-468.
- [2] N. Abada, M. Benchohra, H. Hammouche, Existence and controllability results for impulsive partial functional differential inclusions, *Nonlinear Anal.* 69 (2008) 2892-2909.
- [3] N. Abada, M. Benchohra, H. Hammouche, Nonlinear impulsive partial functional differential inclusions with state-dependent delay and multivalued jumps, *Nonlinear Anal.* 4 (2010) 791-803.
- [4] J. Appell, E. De Pascale, Su alcuni parametri connessi con la misura di non comattezza di hausdorff in spazi funzioni misurabili, Boll. Unione. Mat. Ital. Sez B 3(1984)497-515.
- [5] F.S. De Blasi, On a property of the unit sphere in Banach spaces, Bull. Math. Soc. Sci. Math. Roumanie. 21 (1977) 259-262.
- [6] J. Garcia-Falset, K. Latrach, E. Moreno-Gálvez, M-A. Taoudi, Schaefer-Krasnoselskii fixed point theorems using a usual measure of weak noncompactness J. Diff. Equ. 252(2012)3436-3452.
- [7] Y. Liu, Z. Li, Schaefer type theorem and periodic solutions of evolution equations, J. Math. Anal. Appl. 316 (2006) 237255.